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t ( E )  contains block-wise the 

t ( E )  = Ir(E). 
G ( E )  refers to a supermatrix 

G ( E )  = {G"'"(Z)] 

0953-8984/94/183301t06$19.50 @ 

single site t-matrices, 

% m I  t"(E) = It5p(E)I (3) 

G'""(E) = [C"pm(E)] (4) 

,f the structure constants, 
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and Q denotes a pair of relativistic quantum numbers ( ~ p ) .  As is well known the relativistic 
structure constants G""(E) are easily obtained from their non-relativistic counterparts 
G;;m,(E) by means of a transformation with Clebsch-Gordan coefficients (see e.g. Rose 
1971 or Weinbager 1990) 

for which the following completeness and orthogonality relations apply 

= &..Spc, [C(u)C(u')tlr,,t.m, = 6te'Sm,,G,,,. (6) [ 0=*1/2 C(U)tC(U)] K I L , K ' Z  

The single-site matrices in equation (3) are defined by the usual matching condition for 
scattering solutions R;(E; rn) at the muffin-tin radius R,", 

in terms of the following bispinors 

related to Bessel and Hankel functions, where S. = e -  z. Note that in equations (5). (7), 
(8) and (9) the weak relativistic limit and atomic (Rydberg) units are used. 

Following now the ideas of the sKKR method (see Szunyogh et af 1994). a Dyson 
equation for the screened non-relativistic structure constants can be formulated, 

(10) 

in which site-independent, but &dependent screening parameters form a diagonal angular 
momentum representation 

G:;'"(E) = G ~ ( E )  + CG&(E)&:,,(E)G$W 
k 

&:,(E) = { & ( E ) ~ L L V )  Vn. (11) 

From equation (3, one can easily see that the screened relativistic structure constants are 
then given by 

and that because of the completeness and orthogonality relations for the Clebsch-Gordan 
coefficients in equation (6). the relativistic screening parameters trivially reduce to their 
non-relativistic counterparts: 
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i.e., 

&"(E) = [&,(E)&Kd,,,}. (14) 

The same formal shucture pertains therefore in the relativistic version as in the non- 
relativistic version of the SKKR method, namely that in terms of screened (relativistic) 
smcture constants 

G ~ J Y E )  = G " ~ ( E )  + G"~(E)&~(E)G~.~~(E) (15) 
k 

and screened (relativistic) singlesite t-matrices (see also the discussion in Szunyogh et nl 
1994) 

P ( E )  = t"(E)  -&"(E)  (16) 

a supermatrix of a screened (relativistic) scattering path operator in real space can be 
formulated 

(17) 

such that a block in the unscreened scattering path operator (see equation (2)) is defined by 

T"" ( E )  = r ( E ) P " ( E ) - ' ~ ~ , ~ ~  ( E ) P  (E)-'P ( E )  - 6 . x  (E)tU,* (E)- '  &(E).  (18) 

F ( E )  = [P(E)-' - GYE)]-'  

Because of this formal equivalence between a non-relativistic and a relativistic approach, 
applications to semi-infinite systems, described at length by Szunyogh el al (1994), invoke 
no new aspects in the relativistic case, and therefore need not be repeated here in detail. It 
should be recalled, however, that by grouping 'atomic' layers into 'principal' layers, which 
due to the finite screening length of the structure constants couple only to the next nearest 
'principal' layers, the scattering path operator and therefore consequently also the Green 
function can be viewed as tridiagonal supermatrices labelled by principal layers. In principle 
therefore inversion of the following infinite matrices M 

where L and R denote a left and right semi-infinite system, respectively, and I an 
intermediate interface region, can be performed exactly by recursion. The number of atomic 
layers per principal layer is of course determined by the screening length of G',"m(E). Quite 
clearly any ?q projection of these matrices M shows the same tridiagonal structure. 

3. Numerical aspects 

All calculations were carried out charge self-consistently using the local density functional 
by Ceperley and Alder (1980) and by solving the Poisson equation as discussed by Szu- 
nyogh et al (1994) within the atomic sphere approximation (ASA). For the (100) and (1 11) 
surfaces the interface region (see equation (19)) consisted of four metal and two vacuum 
('atomic') layers, while for the (110) surfaces this region consisted of three metal and three 
vacuum ('atomic') layers. This different set-up for the interface region of (110) surfaces 
follows previous experience with the principal surfaces of Cu. The total number of kit 
points per irreducible wedge of the (surface) Brillouin zone was 45 in the case of the (100) 
and (1 11) surfaces and 49 for the (1 10) surfaces. In all calculations the maximum angular 
momentum quantum number is restricted to two. 
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Au(111) SR R 

- J Figure 1. Semi-relativistic (SR) and relativistic (R) 
CO layer-resolved DOS for ( a )  Au (100). (b) Au (110) and B (c)Au(111). ThelopthreeIaye~aredenotedbysl,sZ 

and s3. respectively. In the semi-relativistic ease the d. 
like contributions to the DOSS are shown as dotted linea. 
in the relarivistic case the dotted and dashed lines refer 
lo the d”’- and dS~’-like contributions, respectively. 
The venical line refers i o  the Fermi energy of the bulk. 
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4. Application to the (loo), (110) and (111) surfaces of Au and Pt 

In figures l(a)-(c) the relativistic and semi-relativistic (inclusion of the mass velocity and 
the Darwin term in the radial Schrlidinger equation) layer-resolved densities of states (Doss) 
are shown for the three principle surfaces of Au. As can be seen from these figures, the semi- 
relativistic DOSS have very little in common with their relativistic counterparts. Because 
of the large spin-orbit splitting of Au and the related relativistic crystal field splitting the 
separation between the d’/*- and d5D-like peaks in the DOSS is quite visible. Also visible is 
that the dispersion is reduced as one approaches the surface: the d3”- and d5D-like peaks 
sharpen up. Quite clearly a semi-relativistic description yields a completely inappropriate 
description for the electronic structure of Au surfaces. 

Turning now to the relativistic cases, it should be recalled that the different widths of 
the d3/’- and d5i2-like peaks in the surface DOS, with respect to the different orientations 
of the surface, mainly reflect the different number of neighbours for a site in these surface 
layers. It is interesting to note that the rather sharp top peak in the DOS for the bulk layer 
(around -0.25 Ryd) is no longer present in the DOS for the surface layer. 

For Pt (figures Z(a)-(c)) this top peak essentially determines the value of the (bulk) 
density of states at the Fermi energy, which as is well known is rather high. As can be seen 
from figure 2, this particular peak is completely wiped out in the case of the (1  1 1) surface, 
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Figure 2. Relativistic (R) layer-resolved DOS for (a )  Pi (100). (b)  R (1 10) and (c )  R (1 I I). 
The top t h m  layers are denoted by SI, s2 and s3. respectively. The dotted and dashed lines 
refer to the d3/’- and d5”-iike contributions. respectively, the vertical line to the Fermi energy 
of the bulk. 

and resolved only as a kind of shoulder for the (100) and (1 IO) surfaces. In all three cases 
the reduction of dispersion near or at the surface can be seen in the shape of the d3l2- and 
d5P-like peaks. 

Because of the large relativistic effects in Au and Pt, doubts ought to be expressed as to 
whether the semi-relativistic DOSS shown by Crampin (1993) for Au (100) have any physical 
meaning at all. A semi-relativistic approach, however tempting to use in an investigation 
of the magnetic properties of the FdAu(100) system, can be completely misleading in the 
case of a noble metal surface coated with a magnetic 3d metal, since ‘hybridization effects’ 
are described wrongly and also indirect relativistic effects in the 3d overlayer, induced by 
the host, have to be expected. Quite clearly polarization effects in the Au layer below 
the overlayer are important, which in turn can only be incorporated properly by using a 
spin-polarized relativistic approach. For the case of Fe double impurities in Au this was 
discussed for example by Weinberger et nl (1990). 

Table 1. Work functions (eV) for different surfaces of Au and R as caIculated semi- 
relativistically (SR) and relativistically (R). Column A refers to the present calculations. culumn 
B to the values of Skriver and Rosengaard (1992). 

(100) (110) (111) 
A B A B A B 

Au SR 6.23 6.16 5.85 5.40 6.08 6.01 
R 6.26 5.86 6.13 

Pi SR 6.93 6.97 6.15 6.67 6.74 
R 6.86 6.10 6.60 
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A completely different story emerges when comparing work functions calculated either 
semi-relativistically or relativistically. From table 1 one can see that for the work functions 
the differences between these two types of calculation are indeed only marginal, which 
however was to be expected, since the work function is determined by the difference of the 
constant vacuum potential level and the bulk Fermi energy. This is also the reason why in 
general the semi-relativistic values of Skiver and Rosengaard (1992), which are shown in 
table 1 for comparison, are quite accurate. The only exceptions are perhaps the values for 
the (1 10) surfaces, since Skriver and Rosengaard (1992) used in their calculations only two 
layers of empty spheres to relax the vacuum region, which seems to be too simplistic (see 
also the discussion in Szunyogh er al (1994)). 

5. Conclusion 

In this paper it was shown that the SKKR method can be extended to a fully relativistic 
description of the electronic structure of semi-infinite systems. In this sense it  is only 
comparable to the recent fully relativistic " B - L ~  formulation by Drchal et al (1994), 
keeping however all the advantages and disadvantages of a true scattering approach. It was 
shown that for surfaces of 5d metals the use of a fully relativistic approach is mandatory 
if one is (also) interested in spectral quantities. Presently the relativistic SKKR method 
is extended to the spin-polarized case, which in principle allows calculation of surface 
magnetic anisotropies or for different orientations of the magnetic field in the case of 
magnetic interface coupling to be dealt with. 
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